首页 | 期刊导航 | 学习空间 | 退出

期刊文章列表

  • Ivonne Anders,Karsten Peters-von Gehlen,Hannes Thiemann(German Climate Computing Center (DKRZ)).Canonical Workflows in Simulation-based Climate Sciences[J].Data Intelligence,2022,第2期
  • Alessandro Spinuso1,Malcolm Atkinson2,Federica Magnoni3(Koninklijk Nederlands Meteorologisch Instituut;University of Edinburgh,Edinburgh;Istituto Nazionale Geofisica e Vulcanologia).S-ProvFlow.Storing and Exploring Lineage Data as a Service[J].Data Intelligence,2022,第2期
  • Sabine Schr?der,Eleonora Epp,Amirpasha Mozaffari,Mathilde Romberg,Niklas Selke,Martin G.Schultz(Forschungszentrum Jülich GmbH).Enabling Canonical Analysis Workflows Documented Data Harmonization on Global Air Quality Data[J].Data Intelligence,2022,第2期
  • Amirpasha Mozaffari1,Michael Langguth1,Bing Gong1,Jessica Ahring1,Adrian Rojas Campos2,Pascal Nieters2,Otoniel José Campos Escobar3,Martin Wittenbrink4,Peter Baumann3,Martin G.Schultz1(Forschungszentrum Jülich GmbH;Osnabrück University;Jacobs University Bremen;Deutscher Wetterdienst).HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction[J].Data Intelligence,2022,第2期
  • Alessandro Spinuso1,Mats Veldhuizen1,Daniele Bailo2,Valerio Vinciarelli2,Tor Langeland3(Koninklijk Nederlands Meteorologisch Instituut;Istituto Nazionale Geofisica e Vulcanologia;NORCE Norwegian Research Centre AS).SWIRRL. Managing Provenance-aware and Reproducible Workspaces[J].Data Intelligence,2022,第2期
  • Limor Peer1,Claudia Biniossek2,Dirk Betz2,Thu-Mai Christian3(Institution for Social and Policy Studies,Yale University;Center for Empirical Research in Economics and Behavioral Sciences (CEREB),University of Erfurt;Odum Institute for Research in Social Science,University of North Carolina System).Reproducible Research Publication Workflow:A Canonical Workflow Framework and FAIR Digital Object Approach to Quality Research Output[J].Data Intelligence,2022,第2期
  • Christian Ohmann1,Romain David2,Mónica Cano Abadia3,Florence Bietrix4,Jan-Willem Boiten5,Steve Canham1,Maria Luisa Chiusano6,Walter Dastrù7,Arnaud Laroquette8,Dario Longo9,Michaela Theresia Mayrhofer3,Maria Panagiotopoulou1,Audrey Richard2,Pablo Emilio Verde10(European Clinical Research Infrastructure Network (ECRIN);European Research Infrastructure on Highly Pathogenic Agents (ERINHA AISBL);Biobanking and Biomolecular Resources Research Infrastructure (BBMRI);European Infrastructure for Translational Medicine (EATRIS);European Advanced Translational Research Infrastructure (EATRIS)/Lygature;European Marine Biological Resource Centre (EMBRC)—Department of Agricultural Sciences,University Federico II of Naples via Università;Department of Molecular Biotechnology and Health Sciences,Molecular Imaging Center,University of Torino;European Marine Biological Resource Centre (EMBRC);European Research Infrastructure for Biological and Biomedical Imaging (Euro-Bio Imaging);Coordination Centre for Clinical Trials,Heinrich Heine University Düsseldorf Ringgold standard institution).Pilot Study on the Intercalibration of a Categorisation System for FAIRer Digital Objects Related to Sensitive Data in the Life Sciences[J].Data Intelligence,2022,第2期
  • Alex Hardisty1,Paul Brack2,Carole Goble2,Laurence Livermore3,Ben Scott3,Quentin Groom4,Stuart Owen2,Stian Soiland-Reyes2,5(School of Computer Science and Informatics,Cardiff University;The Department of Computer Science,The University of Manchester;The Natural History Museum;Meise Botanic Garden;Informatics Institute,Faculty of Science,University of Amsterdam).The Specimen Data Refinery:A Canonical Workflow Framework and FAIR Digital Object Approach to Speeding up Digital Mobilisation of Natural History Collections[J].Data Intelligence,2022,第2期
  • Beatriz Serrano-Solano1,Anne Fouilloux2,Ignacio Eguinoa3,4,Matú? Kala?5,Bj?rn Grüning1,Frederik Coppens3,4(Bioinformatics Group,University of Freiburg;Department of Geosciences,University of Oslo;Department of Plant Biotechnology and Bioinformatics,Ghent University;VIB;Department of Informatics,University of Bergen Ringgold standard institution,University of Bergen).Galaxy:A Decade of Realising CWFR Concepts[J].Data Intelligence,2022,第2期
  • Stian Soiland-Reyes1,2,Genís Bayarri3,Pau Andrio4,Robin Long5,6,Douglas Lowe6,Ania Niewielska7,Adam Hospital3,Paul Groth2(Department of Computer Science,The University of Manchester;Informatics Institute,University of Amsterdam;Institute for Research in Biomedicine (IRB Barcelona),The Barcelona Institute of Science and Technology (BIST);The Spanish National Bioinformatics Institute (INB),Barcelona Supercomputing Center (BSC);Data Science Institute,Lancaster University;Research IT,IT Services,The University of Manchester;European Bioinformatics Institute (EMBL-EBI)).Making Canonical Workflow Building Blocks Interoperable across Workflow Languages[J].Data Intelligence,2022,第2期
  • Thomas Jejkal1,Sabrine Chelbi1,Andreas Pfeil1,Peter Wittenburg2(Karlsruhe Institute of Technology;Max Planck Computing and Data Facility).Evaluation of Application Possibilities for Packaging Technologies in Canonical Workflows[J].Data Intelligence,2022,第2期
  • Andreas Pfeil,Thomas Jejkal,Danah Tonne,Germaine G?tzelmann(Karlsruhe Institute of Technology).From a Dynamic Image Annotation Process within the Humanities to a Canonical Workflow[J].Data Intelligence,2022,第2期
  • Yuandou Wang1,Spiros Koulouzis1,2,Riccardo Bianchi1,2,Na Li1,Yifang Shi2,3,Joris Timmermans2,3,W.Daniel Kissling2,3,Zhiming Zhao1,2(Multiscale Networked Systems,Informatics Institute,University of Amsterdam;Life Watch ERIC,Virtual Lab & Innovation Center (VLIC);Institute for Biodiversity and Ecosystem Dynamics (IBED)).Scaling Notebooks as Re-configurable Cloud Workflows[J].Data Intelligence,2022,第2期
  • Nikolay A.Skvortsov,Sergey A.Stupnikov(Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences).A Semantic Approach to Workflow Management and Reuse for Research Problem Solving[J].Data Intelligence,2022,第2期
  • Hendrik Nolte,Philipp Wieder(Gesellschaft für wissenschaftliche Datenverarbeitung mbH G?ttingen G?ttingen).Realising Data-Centric Scientific Workflows with Provenance-Capturing on Data Lakes[J].Data Intelligence,2022,第2期
  • Abraham Nieva de la Hidalga1,2,Donato Decarolis1,2,Shaojun Xu1,2,Santhosh Matam1,2,Willinton Yesid Hernández Enciso1,2,Josephine Goodall1,2,Brian Matthews3,C.Richard A.Catlow1,2,4(UK Catalysis Hub,Research Complex at Harwell,Rutherford Appleton Laboratory;School of Chemistry,Cardiff University;Scientific Computing Department STFC,Rutherford Appleton Laboratory,Harwell Campus;Department of Chemistry,University College London).A Workflow Demonstrator for Processing Catalysis Research Data[J].Data Intelligence,2022,第2期
  • Peter Wittenburg1,Alex Hardisty2,Yann Le Franc3,Amirpasha Mozaffari4,Limor Peer5,Nikolay A.Skvortsov6,Zhiming Zhao7,Alessandro Spinuso8(FDO Forum;Cardiff University;e Science Factory;Forschungszentrum Jülich GmbH;Yale University;Russian Academy of Sciences;University of Amsterdam;Royal Netherlands Meteorological Institute (KNMI)).Canonical Workflows to Make Data FAIR[J].Data Intelligence,2022,第2期
  • Peter Wittenburg,Alex Hardisty1,Amirpasha Mozzafari,Limor Peer2,Nikolay Skvortsov,Alessandro Spinuso,Zhiming Zhao3(Cardiff University;Institution for Social and Policy Studies,Yale University;University of Amsterdam).Editors’ Note:Special Issue on Canonical Workflow Frameworks for Research[J].Data Intelligence,2022,第2期
  • Dirk Betz1,2,Claudia Biniossek1,2,Christophe Blanchi3,Felix Henninger4,Thomas Lauer2,Philipp Wieder5,Peter Wittenburg3,6,Martin Zünkeler7(TIB – Leibniz Information Centre for Science and Technology;Center for Empirical Research in Economics and Behavioral Sciences (CEREB),University of Erfurt;DONA Foundation,C/O Université de Genève;Statistics and Data Science in Social Sciences and the Humanities,Department of Statistics,Ludwig-Maximilians-University München;GWDG;FDO Forum;KAIROS Bochum).Canonical Workflow for Experimental Research[J].Data Intelligence,2022,第2期
  • Christophe Blanchi1,Binyam Gebre,Peter Wittenburg2(DONA Foundation,C/O Université de Genève;FDO Forum).Canonical Workflow for Machine Learning Tasks[J].Data Intelligence,2022,第2期
  • Vivek Navale,Matthew McAuliffe(Center for Information Technology,National Institutes of Health).The Integration of a Canonical Workflow Framework with an Informatics System for Disease Area Research[J].Data Intelligence,2022,第2期
  • Triet Ho Anh Doan,Sven Bingert,Ramin Yahyapour(Gesellschaft für wissenschaftliche Datenverarbeitung mb H G?ttingen).Using a Workflow Management Platform in Textual Data Management[J].Data Intelligence,2022,第2期
  • Zhibin Chen1,2,Yuting Wu1,3,Yansong Feng1,3,Dongyan Zhao1,3(Wangxuan Institute of Computer Technology,Peking University;Center for Data Science,Peking University;The MOE Key Laboratory of Computational Linguistics,Peking University).Integrating Manifold Knowledge for Global Entity Linking with Heterogeneous Graphs[J].Data Intelligence,2022,第1期
  • Haixu Xi1,2,Chengzhi Zhang1,Yi Zhao1,Sheng He2(School of Economics and Management,Nanjing University of Science and Technology;School of Computer Engineering,Jiangsu University of Technology).Public Emotional Diffusion over COVID-19 Related Tweets Posted by Major Public Health Agencies in the United States[J].Data Intelligence,2022,第1期
  • Xiaxia Wang,Tengteng Lin,Weiqing Luo,Gong Cheng,Yuzhong Qu(State Key Laboratory for Novel Software Technology,Nanjing University).CKGSE:A Prototype Search Engine for Chinese Knowledge Graphs[J].Data Intelligence,2022,第1期
  • Shusaku Egami1,2,Takahiro Kawamura1,3,Kouji Kozaki1,4,Akihiko Ohsuga2(National Institute of Advanced Industrial Science and Technology (AIST);Graduate School of Informatics and Engineering,The University of Electro-Communications;National Agriculture and Food Research Organization;Faculty of Information and Communication Engineering,Osaka Electro-Communication University).Detecting Vicious Cycles in Urban Problem Knowledge Graph using Inference Rules[J].Data Intelligence,2022,第1期
  • Lei Li1,2,Minghe Xue2,Zan Zhang2,Huanhuan Chen3,Xindong Wu1(Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology),Ministry of Education;School of Computer Science and Information Engineering,Hefei University of Technology;School of Computer Science and Technology,University of Science and Technology of China).Certainty-based Preference Completion[J].Data Intelligence,2022,第1期
  • Ting Jia1,Yuxia Yang1,Xi Lu1,Qiang Zhu1,Kuo Yang1,2,Xuezhong Zhou1(Institute of Medical Intelligence,School of Computer and Information Technology,Beijing Jiaotong University;BNRIST/Department of Automation,Tsinghua University).Link Prediction based on Tensor Decomposition for the Knowledge Graph of COVID-19 Antiviral Drug[J].Data Intelligence,2022,第1期
首页 上一页 1 2 3 下一页 尾页 共有3页,转到 页

帮助 | 繁體中文 | 关于发现 | 联系我们

超星发现系统 Copyright©·powered by 超星

客服电话:4008236966